Evaluation of Laboratory Methods to Quantify Chlorophyll-a

A TCEQ Project Contracted to the Texas Institute for Applied Environmental Research (TIAER)

Red River Authority Steering Committee Meeting, April 2019

Background

- The SWQM Program is responsible for monitoring and assessing water quality in Texas. These water quality data provide a basis for the evaluation of the attainment of established uses to support the development of the 303(d) List.
- Chlorophyll-a data submitted to SWQMIS is currently analyzed using several different methods.
- ► TIAER will evaluate the spectrophotometric, conventional fluorometric, and modified fluorometric methods used to quantify chlorophyll-a.
- Analyses are conducted on four different chlorophyll concentration levels using lab prepared standards, as well as ambient surface water samples.
- ► TIAER plus additional labs, including Red River Authority, are participating in this study.

Study Design

- **Ambient Samples**
 - ▶ 2 rounds
- Lab Samples
 - ▶ 1 round
- 3 Methods
- 4 Concentrations
- 8 Replicates Each
- 4 Sets of Labs
- Over 1,000 samples total for Phase I

		Low	
hlorophyll			
oncentration Range	Lab Pi	repared Sa	ample
nalytical Method	SPEC	C-FL	M-FL
	1	1	1
	2	2	2
	3	3	3
	4	4	4
eplicates	5	5	5
	6	6	6
	7	7	7
	8	8	8
'		24 Total	
		Low	
hlorophyll			
oncentration Range	Ambie	nt Water 9	Sample
nalytical Method	SPEC	C-FL	M-FL
	1	1	1
	2	2	2
	3	3	3
	4	4	4
eplicates	5	5	5
	6	6	6

Mid-Low			
Lab Prepared Sample			
SPEC	C-FL	M-FL	
1	1	1	
2	2	2	
3	3	3	
4	4	4	
5	5	5	
6	6	6	
7	7	7	
8	8	8	
24 Total			
	Add Law		

		Low	
hlorophyll			
oncentration Range	Ambient Water Sample		
nalytical Method	SPEC	C-FL	M-FL
	1	1	1
	2	2	2
eplicates	3	3	3
	4	4	4
	5	5	5
	6	6	6
	7	7	7
	8	8	8
'		24 Total	

Mid-Low			
Ambient Water Sample			
SPEC	C-FL	M-FL	
1	1	1	
2	2	2	
3	3	3	
4	4	4	
5	5	5	
6	6	6	
7	7	7	
8	8	8	
24 Total			

Mid-High		
Ambient Water Sample		
SPEC	C-FL	M-FL
1	1	1
2	2	2
3	3	3
4	4	4
5	5	5
6	6	6
7	7	7
8	8	8
24 Total		

	High	
Ambie	nt Water S	Sample
SPEC	C-FL	M-FL
1	1	1
2	2	2
3	3	3
4	4	4
5	5	5
6	6	6
7	7	7
8	8	8
	24 Total	

		Low	
Chlorophyll			
Concentration Range	Ambient Water Sample		
Analytical Method	SPEC	C-FL	M-FL
	1	1	1
	2	2	2
	3	3	3
Replicates	4	4	4
	5	5	5
	6	6	6
	7	7	7
	8	8	8
,		24 Total	

Mid-Low					
Ambie	nt Water	Sample			
SPEC	C-FL	M-FL			
1	1	1			
2	2	2			
3	3	3			
4	4	4			
5	5	5			
6	6	6			
7	7	7			
8	8	8			
24 Total					

	Mid-High		
Ambie	nt Water S	Sample	
SPEC	C-FL	M-FL	
1	1	1	
2	2	2	
3	3	3	
4	4	4	
5	5	5	
6	6	6	
7	7	7	
8	8	8	
24 Total			

High			
Ambient Water Sample			
SPEC	C-FL	M-FL	
1	1	1	
2	2	2	
3	3	3	
4	4	4	
5	5	5	
6	6	6	
7	7	7	
8	8	8	
24 Total			

	Total # Lab	Total # Ambient		
	Prepared Samples	Water Samples	Total # Samples	
Contract Lab	96	192	288	
Sub-contract Lab 1	96	192	288	
Sub-contract Lab 2	96	192	288	
Sub-contract Lab 3	96	192	288	
1152 Total				

Possible Sampling Locations

- First round of ambient samples were collected from the following waterbodies
 - ► New Marlin City Lake
 - Proctor Lake
 - Lake Cisco
 - ▶ Possum Kingdom Lake
 - ► Lake Coleman

Current Status

- TIAER has received all of the results for the lab prepared standards and results for the first round of ambient samples.
- The second round of ambient sampling will take place each week of April 2019.
- Data will be analyzed throughout the spring and a report will be produced by the end of Aug 2019.

Future Directions: Phase II

Phase II will take place FY20-21 and tentatively includes:

- ► TIAER Intralab analysis of ambient water at four concentrations
- ► TIAER Intralab analysis of ambient water with monthly sampling
- ▶ Interlab (up to 9 labs) analysis of ambient water at four concentrations
- Interlab (up to 9 labs) analysis of ambient water with quarterly sampling
- ► Analyze relationships between multiprobe in-situ readings and lab results
- Investigate modifications to standard operating procedures for each of the chlorophyll-a methods
- Data analyzed and report produced by August 2021

For additional information:

Larry Hauck

Hauck@tarleton.edu

Texas Institute for Applied Environmental Research at Tarleton State University